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Abstract

The condensation approximation {CA) and numerical regularization procedure {RP)
methods used to solve a Fredholm integral equation of the first kind describing the adsorption
equilibria on a heterogeneous solid surface under isothermal conditions have been adopted in
the present study to evaluate desorption energy distributions from temperature-programmed
desorption (TPD) spectra. From comparisons of the computational results obtained by means
of these methods on the basis of simulated TPD spectra, it follows that the CA gives stable so-
lutions for wide desorption energy distributions and it can be used successfully for caleula-
tions [rormn wide and clear resolved peaks in the TPD spectra. The use of the RP is more advan-
tageous for acquisition of the distributions from closely related narrow peaks in the TPD spectra.

Keywords: desorption energy distribution, heterogeneous solid surface. non-isothermal kinetics,
TPD spectra

Introduction

Intrinsic and induced heterogeneity in surface sites are often present on most
solids. The non-isothermal desorption of preadsorbed probes is one of the best
methads known for accurate measurement of the desorption activation energies
as equal to the adsorption heats and hence to characterize the catalysts or adsor-
bents from the dependence of the desorption energy on the surface coverage. The
strength of the surface sites from which the probe molecules desorb is frequently
simply characterized by the temperature of the peak maximum in the desorption
spectra. More information is obtained by evaluating the energies of desorption
and, if possible, their distribution. Since the desorption spectra are often poorly
resolved, curve decompesition techniques have been used. A common procedure
used in practice consists in performing the desorption at various initial surface
coverages, with following calculation of the plot of the desorption energy vs. the

* Author for correspondence: e-mail: val @ucs.freenet.kiev.ua

1418-2874/99/ 8 5.00 Akadémial Kiadd, Budapest
© 1999 Akadémiui Kiads, Budapest Kiluwer Academic Publishers, Dordrecht



484 BOGILLO, SHKILEV: DESORPTION ENERGY DISTRIBUTION

coverage. However, only a limited region of this dependence, and related to it the
desorption energy distribution curve, is accessible from the different TPD spectra.

The simplest approach to a resolution of this problem is based on the approxi-
mate solution of the integral equation for the desorption kinetics on the heteroge-
neous surface by using the condensation approximation (CA), which does not
produce an unstable solution in the case of a wide desorption energy distribution
function. The application of the CA approach to describe the isothermal desorp-
tion kinetics was developed in [1]. This approach has been modified in the pre-
sent study to describe the desorption kinetics under non-isothermal conditions.
The desorption energy distributions evaluated in this manner are compared with
those computed by using the more exact numerical modified regularization pro-

/TITY

cedure {RP}.

Results and discussion

The overall rate of desorption from the heterogeneous solid surface is given
by

Ed(mﬂx)
dN J‘dNi(Ed(i))

N | !
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Ed(mm)

where the local first-order desorption rate from the i-th patches possessing
desorption activation energy Ey) is determined as

dNi(Eqqy) e Eai (2)
= ~AaNi(Eqqy)exp| — RT

where Ni(E4;) is the number of adsorbed molecules possessing desorption acti-
vation energy Eqi), Aq 1s the desorption pre-exponential factor and p(Ey) is the
desorption activation energy distribution function, and Egqyin and Eguay are the
lower and upper limits of this function.

The local surface coverage O Eqg) is due to the coverage of sites of type i and
this is defined as

Ni(Eqgy)

Nl’l’laX

(Eqn) =

where Ny, is the maximum overall concentration of the » types of surface sites
under the following condition:

zei(Ed(i)) =1

i=1
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In order to simplify the evaluation of the experimental desorption spectra,
two assumptions are commonly used: (i) the pre-exponential factor As is con-
stant, and (ii) the desorption from the different kinds of sites with Ey occurs
through a non-associative mechanism. All ensuing relations correspond to the
desorption of localized adsorbed molecules, i.e. the activation energy of surface
diffusion of these molecules is higher than their desorption activation energy.

Condensation approximation

The CA consists in replacing the kernel of Eq. (1) (dNi(Eqq)/de) by the
stepped function. Let us assume that in the desorption process the occupied sites
ara relepaced c)nnnpnh'ﬂ]\r 1.2 at each moment of time ﬂ‘hﬂ QlfPQ with dF‘QﬂTﬂFIﬁn
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activation energy lower than Ey. are emptied and those with desorption activation
energy higher than E,. are filled:

1 for Egiy 2 Eacy

_ (3)
0 for Eggy < Faesy

Oi(Eq4)) = {

Tt can be inferred that the patches with desorption activation energy Eq; are

released at temperature T such that the local desorption rate (dNi(Eqq)/ds) has a
maximum. If the desorption temperature varies linearly with time:

T=T,+Pt (4)

where T, is the initial desorption temperature and 3 is the heating rate, the
desorption energy Eqgy does not depend on the surface coverage 8 of the i-th
patch, and the relation between the desorption activation energy and this tem-
perature maximum can he derived by equating the first derivative of the desorp-
tion rate (Eq. (2)) with respect to temperature to zero, and solving this differen-
tial equation. This solution can be written:

Edc BEdc
Agex — (5a)
‘ p( RT} RT*
or, after rearrangement and taking fogarithms of both sides of Eq. (5a), one can
obtain
Es _, (AT (Ea
T lr{ B J— ln[RTJ (5b)
The distribution function p(Fy.) can be derived from Eq. (6):
Edc{max) 6
o) = foFa)dEac (©
Edv.(mm)
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486
where @(T)=N/N, is the surface coverage and N, is the total number of surface

sites.

From Eq. (6), it immediately follows that
40 _ dEqg 7
a7 = PECgr 7

and
de dr (%)

unction F(T,E4.) such that
(9)

(19

and

Derivative d7/dEq., which is needed to calculate the desorption energy distri-
bution function from experimental TPD spectra (Eq. (8)), is then given by the

following equation:
oF 1
—+
d7 _ 8Ea _RT  Es _Es+RT _ RT® (12)
dEq. ﬂ?‘ Egc + 2 Foge— RT Eq. +2RT
RT® T

oT
Let us denote the variable £4./RT by x. The derivative of T with respect to Eq.
(D

can be written as
1+x

dr__
dEg.  RQ2x+x)
We can then calculate the function p(Fy:) from the single TPD spectrum (i.e.
from the dependence of d&/dr on T) in accordance with foliowing procedure:
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i) Solution of the non-linear Eq. (12):

x= ln(A—EZJM In(x) (12)

for each temperature point 7 ranging from the minimam (73} to the maximam
(Twax) measured temperatures and determination of the desorption activation en-
ergy E4.=RTx for each T value.

i1} Calculation of the function p(Es.) at given T from the following equation:

=

plide) = dr

__1_:_*1T (13)
R(2x +x7)

- |-

This approach was used to determine the silica surface distribution function
with respect to the water desorption energy, and the dependence of the apparent
desorption energy on the silica surface coverage [2].

However, use of the CA to calculate the desorption energy distribution func-
tion leads to smoothing of the complex distribution curve having narrow closely
spaced peaks in the TPD spectra. Therefore, we have developed a more exact
method for calculation of such complex desorption energy distribution curves.
This is based on use of the RP.

Regularization procedure

The total desorption rate from the heterogeneous solid surface is equal to the
weighted sum of the discrete local rates from the different surface sites (i}:

O 3 do (14)
df : dt

jo 1
1=

where ¢ 18 the fraction of the sites of the /-th kind and £eo= 1. Since

i=1

46 _ Eagy 15)
a AaBi exp[ RT} (

and the value of 8 is related to the initial surface coverage at =0 (0;) in accord-
ance with the equation

Eam
0; = Bl(o)exp|i-Ad exp(“——RT t (16)
tha avinraccinn farthe laqcal vnta Ao ha wwrittan in tha aovavs darailad Farmn ae
L Lu\k}lL/DDlUlJ. IV LG 1ol 1Ale badll U WHILLCLD 11D LG T O U lalloy] 1ULLLL ad
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d6 i) Eqgiy Eqiy
?:_gi(o) Ag CXP[" rT £XP —-Ag exp AFTI’— ¢ (17)

As n—>oo, the sum in Eq. (14) can be rewritten in the integral form

4@ e
= |3 P EDdE:S (18)

In the case of first-order desorption kinetics, the differential equations for the
different sites can be solved independently (Eq. (2)) without knowledge of the
distribution function p(Ey). Therefore, the first step for solving Eq. (18) consists
in the solution of Eq. (2) for each kind of surface site and determination of the
kernel of Eq. (18), The next step involves the solution of the integral Eq. (18) by
means of the RP.

Taking into consideration Eq. (4) this solution for Eq. (2) can be written as

6= e(o)exp{%‘{&(m S p g + e""i—_‘”} (19)

where 8, is the initial fraction of the site with Eq at 1=0, u=E4/RT and u.=E4/RT.,.
The real integral function E,(u) is determined as

Ei(u) = J————eXp:At)dr (20)

u

This function can be approximated by a known power standard series. It
should be mentioned that the distribution function p{Ey) which is calculated after
substituting 8 from Eq. (19) into Eq. (18) corresponds to the distribution with re-
spect to desorption energy only for the filled surface sites. Then, in reality, the
calculated desorption energy distribution function 8(Eg) is an apparent function
(p(Ed)app) and is equal to the product of the real distribution function (p(£q)rea))
and the initial local surface coverage (8, ).

From a mathematical point of view, Eq. (1) is a Fredholm integral equation of
the first kind. Solving this equation with respect to the desorption energy distri-
bution (DED) function is a numerically ill-posed problem, i.e. small changes in
the measured desorption rate, caused by experimental errors, can significantly
distort the sought-for function. One method to solve ill-posed problems is the RP
[3, 4]. The fundamental idea of the numerical regularization is to replace the ill-
posed problem of minimizing the select function by a well-posed problem which
smoothes the calculated distribution function and distorts the original problem
insignificantly. Hence, solving the integral equation is replaced by minimization
of the functional dp(Eg]:
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2

Ed{'““) Ed(max)
da; d®
Blp(Ea] ={ [ 2p(EddEa— Tt + afp (EdEy (21)
Edtmin} Edimin)

where o (120>0) is the regularization parameter that is dependent on the relative
experimental error,

The choice of the optimal of the regularization parameter ¢ is crucial for the
sought-for DED function. A very low value of the regularization parameter gives
rise to spurious peaks, while too high a value oversmoothes the DED function.

In the present study, the following method, consisting of two steps, has been
used to find the optimal regularization parameter. First, function {21) was mini-
mized at ¢=0. The value of this minimum may then serve as a measure of the ac-
curacy of the experimental data for m points in the TPD spectrum:

2 Q12

_ “{“‘2 (d@ dBe4 oEd))w (22)
L - a

In the second step, the value of o is calculated at which the DED} function
p'(E4) minimizing function (21) satisfies the following condition:

2 ql2

] (23)

ng=|=3 [9“ P (Es) —

i1

In the present study, parameter 1 was taken as equal to 1.

The special convenience of this method is that the solution may be improved
by varying the free parameter 1. The necessity of the free parameter stems from
the fact that there is no method of finding the stable solution for ill-posed prob-
fems without taking into account errors in input data [5]. This means that, if the
accuracy of a measured TPD spectrum is unknown, the choice of a regularization
parameter will always be subjective. None of the existing methods for choosing
parameter ¢ can be strictly proved and all of them give, in one case or another,
unsatisfactory results. Without a free parameter 1, one has to be satisfied with the
solution even if it is either oversmoothed or contains spurious peaks.

A computer program was used here to calculate the DED function with re-
spect to positive values of p(Eq). In this program, the integrals were computed by
the trapezoid method. Minimization of function (18) was performed by the con-
jugate gradient method. The regularization parameter was determined by using a
generalized deviation principle The half-interval procedure was used to solve
the cquauuub of the deviation, The dqun[ng of the RP 1s the pOSSlDlll[y to cal-
culate more points on a desired DED function than the number of experimental
points available, as in the case of the CA.

J. Therm. Anal. Cal., 53, 1999



490 BOGILLO, SHKILEV: DESORPTION ENERGY DISTRIBUTION

10 T, 50
=2 10 =3kkmol’ @) . O = 5khmol’ bl
T o a -': g d
£ i i £
MD ::' e Trye :'E mo 40— ';.. _."
% 50l — ot = R
o : W 30F :
frf re H
0 i
10~ H
A Rl 1)
0o 20 140 160 180 200
Eq/klmal’
- 30 . 25
2 %, =7 kl-mol <) = 6 = 9xl-mol” d)
= : = E o .
[=] ! + [+] L3 (13
E 25~ i € 2l ! i
Q [=]
= 20 3
Ty w15
[t 151 [
ok
10
5} 5
a L T 9 S D I
80 100 120 w0 160 18O 200 G 100 1207 140 180 180 200 ?.Zq
E,/kJ-mal” E,/k}mol’
T 60 70
2 i o = 30 kJ;mot”
o o= 50 ki-mol” el 3 %= 30kgmol 4 1)
E 50 g 80 ﬁ
mG "’G
% w0 % sor
“E’ Lli.d' 401 3
30k 7
30
20
20~
easee True
10 10— — Cond
0 =/ 1 l ! 0 | |
+] 00 200 300 400 500 9] 100 200 300 400 500
E, /ktmol” Eq/kdmal’
Fig. 1a—f Desorption energy distributions, simulated by bi-gaussian distribution (dotted
=

lines) or calculated from the simulated TPD spectra by using the condensation approxi-
mation {solid lines). The initial parameters of the simulated distributions are given in
Table 1
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The TPD spectra for testing both methods were simulated by using the bi-
gaussian distributions

1 (Eq—- Ed(l))2
plEg) =fi pm——0exXp|———5 |t
VARG, 20%(1) )

( (Ea— Eap)’

1
+ (1 - ex
(=) N2TGn(2) pk Zﬁﬁ(g) J

where Eqg stands for the most probable desorption energy (average value) for the
i-th gaussian peak (i=1, 2) and oy for the mean square deviation of the Fy
value, and f; is the relative concentration of the sites with Eg; (12200,

The desorption energy distributions calculated by using the CA and the modi-
fied RP at various Oy, values and the difference between the average desorption
energies from these two types of surface site at /1=0.5 are presented in Fig. 1a—f.
The heating rate is equal to 0.02 Ks™', A4 is 1-10"'s™" and the average desorption
energies of the first and second peaks are 130 and 170 kJ mol™ in Fig. 1a—d,
whereas in Fig. le, f the heating rate is equal to 0.097 K s, Adzl-lOBsfI and the
average desorption energies of these peaks are 200 and 300 kJ mol™', respec-
tively. The desorption energy distribution functions calculated by using the CA
and modified RP are denoted by solid and dotted lines, respectively. The initial
Eqg; and Ong) values used in the simulation of the TPD spectra are given in Table 1.
Further, the mean square deviations of the desorption energy for the two peaks in
the simulated distribution curves are equal and are given in Fig. 1a—f. It turns out
that the distribution curves calculated by using the RP coincide completely with
the simulated curves.

(24)

Tahle 1 Parameters of the simulated and calculated desorption energy distributions by using the
condensation approximation and modified regularization method

E 7 E. .l o [/ / R/ ~ / / ol
No {1y d(2y ol ; / L

b Gn(i)"f A‘Jl P My Gy e
J mot™! s Ks kJ mol-1  kJ mol-1 5
a 130 170 3 3 10" 0.02 0.0181 0.0623 0.174
b 130 170 5 5 10" 0.02 0.0158  0.0700 0.196
c 130 170 7 7 16" 0.02 0.0108 0.0350 0.103
d 130 170 9 9 10" 0.02 0.0089  0.0100 0.030

e 200 300 50 50 10" 0.097 0.0088 $.00046 0.012
f 200 300 30 30 104 0.097 3.6107°  0.00044  2.810°F

Notes: The f] value (Eq. (24)) was taken as 0.5;

The number of points in the simulated TPD spectra was 41;

The initial surface coverage was taken as 1 in all simulations;

o, and g, are mean squarc deviations for smoothed (1) and unsmoothed (2)

solutions performed by the RP;

Cheb is the maximum deviation of the caleulated TPD spectra by the RP from the simulated spectra.
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It is evident from Fig. 1a—f and Table 1 that the CA gives stable solutions for
wide desorption energy distribution functions and it can be used successfully for
calculations from wide clear resolved peaks in TPD spectra. The application of
the RP is more advantageous for acquisition of the desorption energy distribu-
tions from closely related narrow peaks.

Conclusions

The CA and RP methods used to solve a Fredholm integral equation of the
first kind describing the adsorption equilibria on a heterogeneous solid surface
under isothermal conditions were adopted in the present study of evalnate the
desorption energy distributions from TPD spectra on a heterogeneous solid surface.

From comparisons of the computational results obtained by means of these
methods on the basis of simulated TPD spectra, it follows that the CA gives sta-
ble solutions for wide desorption energy distribution functions and it can be used
successfully for calculations from wide clear resolved peaks in the TPD spectra.
The used of the RP is more advantageous for acquisition of the distributions from
closely related narrow peaks in these spectra.

These methods can be usefully applied to evaluate the desorption energy dis-
tributions for various molecular acid/base probes from the heterogeneous sur-
face of adsorbents and catalysts and the dependences of the apparent desorption
energy on the surface coverage on the basis of experimental TPD MS spectra and
DTG curves. Examples of the use of these methods to determine the desorption
energy distributions from TPD MS spectra of physically adsorbed and structural
water on various silica surfaces and from DTG curves of adsorbed liquid-mo-
lecular probes on mesoporous silica gels were presented in recent papers
(2,6,7].

a
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